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Rayleigh’s method is used to find the electric potentials of a composite of poly-dispered
spherical particles in a linear continuum in an external electric field. Based on the solutions
of potentials, analytical formula for the effective electric conductivity is derived. Based on
the formula, several factors, such as the number of spherical inclusions, the spatial
distribution of the spheres, the contrast ratio σi/σh (where, σi and σh are the conductivities
of the spherical inclusion and the host medium, respectively) and volume fraction of the
inclusions, are discussed. Our results show that at high volume fraction, the effective
conductivity is also affected by the spatial distribution of the inclusions. C© 2003 Kluwer
Academic Publishers

1. Introduction
The transport properties of composite media have been
extensively studied in recent years and used in engi-
neering applications [1–4]. Several methods have been
developed to estimate the effective physical properties
of composites with two and three dimensions lattice
models [5–8], such as Rayleigh’s method, transforma-
tion method, Fourier series method and so on [9, 10].
On the basis of these researches, where the inclusion
particles are regularly arranged, one can further investi-
gate the effective conductivity of composites with poly-
dispered inclusions, which are very common in practi-
cal composite systems. We shall investigate the problem
of the effective response of a composite with inclusion
particles randomly embedded in a unit cell in a con-
tinuous matrix, and whether the effective response is
related to the distribution of the particles in the matrix.
In order to discuss these problems, we have to consider
factors such as the volume fraction of the inclusion par-
ticles, contrast ratio σi/σh (where, σi and σh are the lin-
ear conductivity coefficients of spherical inclusion and
host medium, respectively), the number of particles, the
positions of particles situated in the unit cell and so on.
It is well known that the volume fraction of inclusions,
the geometry of particles and the contrast ratio σi/σh

are important factors affecting the effective conductiv-
ity of a composite, but there is still the question of how
the distribution of particles affects the effective con-
ductivity. When an external electric field is applied to
a composite, the variation of the local field at different
points inside the composite is quite complex because
of the particle polarization and interaction, which is re-
lated to the microstructure (or geometry of particles)
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and the distribution of inclusions beside the intrinsic
physical properties of the inclusion and the host. For
instance, the inclusion particle size dispersion and clus-
tering are also important factors. In the present work,
we will derive the formula for the effective conductiv-
ity of a composite of poly-dispered spherical particles
randomly embedded in a linear continuum by means of
Rayleigh’s method and discuss the effects of particle
distribution.

We apply Rayleigh’s method to solve the potentials
within a composite with poly-dispersed spherical par-
ticles randomly immersed in a unit cell. The advan-
tage of this method is that it is capable of producing
highly accurate numerical results for the effective re-
sponse of composites by the aid of modern comput-
ers. The pioneering method was proposed by Rayleigh
[11], who, in order to calculate the effective conductiv-
ity, studied in great detail the two and three dimension
systems of the square array and cubic lattice. Subse-
quently, Rayleigh’s method was developed to estimate
the effective response of composites with periodic mi-
crostructure by several authors [12–14]. For example,
Suen et al. improved this method for solving the lattice
model to arbitrary order when it was used to estimate the
thermal conductivity of composites [15]. Lam worked
with Rayleigh’s method and derived an iterative equa-
tion to calculate the effective magnetic permeability of a
simple cubic lattice [16]. Gu et al. developed Rayleigh’s
method by means of Green’s function and perturbation
expansion to deal with the linear and nonlinear effective
response of composites with periodic structure [17].
Almost all of these works are devoted to composites
with regular arrangement of particles embedded in a
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lattice. The version of Rayleigh’s method developed
by Gu et al. is suitable for solving our present com-
posite problem since the polarization of poly-dispered
random particles is considered in his model. Here, we
shall make use of the same method in this study.

The structure of this paper is as follows. In Section 2,
Rayleigh’s identities for three-dimensional linear ran-
dom composites with spherical inclusions are derived.
In Section 3, a formula for effective conductivity is
given, and the effects of various factors on the effective
coefficients are investigated. The last section contains
a brief conclusion.

2. Rayleigh’s method for linear
random composite

We consider the electric fields and potentials within
a linear conducting composite medium in a unit cu-
bic cell in which spherical particles are randomly sus-
pended. We assume that the constitutive equations of
current density J and local electric field E in the host
and inclusion regions are

Jα = σα E, α = i, h. (1)

The subscripts α = i , h denote the quantities in inclu-
sion and host regions, respectively. σ denotes the con-
ductivity. The electrostatic equations are supplemented
by

∇ · J = 0 (2)

∇ × E = 0 (3)

The boundary conditions are given by the continuity
of the potential and the normal component of current
density across the inclusion-matrix interfaces.

Let N different inclusion spheres with different radii
aN be randomly situated inside a unit cube. The unit
cube, with its contents, is replicated periodically in
three directions of space to form an infinite medium.
The replicated cells are labeled by subscript j . In each
cubic cell, the regions of inclusion spheres and host are
denoted by �i and �h , respectively. Suppose the origin
of the coordinate system is located at the center of the
kth sphere in the zeroth cell, a set of Laplace equations
of the local electric potentials ϕα (α = i , h) are given
by Equations 1 and 2 since Equation 3 implies the exis-
tence of local potentials. Clearly, the general solutions
of potentials in the inclusion and host regions can be
directly obtained:

ϕi (ρk, θk, ϑk)

= Ck
0 +

∞∑
l=1

l∑
m=0

ρl
k Pm

l (cos θk)
[
C1,k

l,m cos(mϑk)

+ C2,k
l,m sin(mϑk)

]
, in �i (4)

ϕh(ρk, θk, ϑk)

= Ak
0 +

∞∑
l=1

l∑
m=0

{
ρl

k Pm
l (cos θk)

[
A1,k

l,m cos(mϑk)

+ A2,k
l,m sin(mϑk)

] + ρ−l−1
k Pm

l (cos θk)

× [
B1,k

l,m cos(mϑk) + B2,k
l,m sin(mϑk)

]}
, in �h . (5)

where k = 1, 2, . . . , N · Pm
l (cos θ ) is an associated

Legendre function. The position vector �rk of a point
is expressed in spherical coordinates as (ρk , θk , ϑk).
The polar angles θk and ϑk are from the z-axis and the
x-axis, respectively. Considering the boundary condi-
tions of the potential and normal current density across
the surface of the sphere, we can get a set of relation-
ships between the unknown coefficients:

Ck
0 = Ak

0

Ct,k
l,m = 2l + 1

l(1 − σk/σh)

Bt,k
l,m

a2l+1
k

, t = 1, 2 (6)

At,k
l,m =

(
2l + 1

l(1 − σk/σh)
− 1

)
Bt,k

l,m

a2l+1
k

, t = 1, 2. (7)

where σk and ak are the conductivity coefficient and
radius of the kth sphere, respectively.

If a uniform external electric field E0 is applied to
the unit cell along the z-axis, the particle polarization
will induce a source term due to discontinuity of the
normal electric field on the surface of the sphere. The
induced surface charge density is calculated as

Qk(θk, ϑk) =
(

∂ϕi

∂ρk
− ∂ϕh

∂ρk

)
ρk=ak

=
∞∑

l=1

l∑
m=0

2l + 1

al+2
k

Pm
l (cos θk)

× [
B1,k

l,m cos(mϑk) + B2,k
l,m sin(mϑk)

]
,

k = 1, 2, . . . , N . (8)

Considering the applied electric field and the induced
source term, we can derive another expression of the po-
tentials in the composite medium by means of Green’s
function:

ϕ(ρk, θk, ϑk) = −E0zk +
∞∑
j=0

N∑
s=1

1

4π

∫ ∫
�s

Qs(θs, ϑs)

× G(�rksj − �rs)dSs, k = 1, 2, . . ., N .

(9)

where G(�rksj − �rs) = (|�rksj − �rs |)−1 is the general
Green’s function of Laplace equation in three dimen-
sions. �rksj = �rk − �Rksj, where the vector �Rksj is the po-
sition vector of the center of the sth sphere in the j th
cell. The vector �rs is from the center of the sth sphere
to the surface of the same sphere in the j th cell. If the
position vector �rk lies in the host region, the potential
can be obtained by integrating Equation 9 to obtain

ϕh(ρk, θk, ϑk)

= −E0zk +
∞∑
j=0

N∑
s=1

∞∑
l=1

l∑
m=0

ρ−l−1
ksj Pm

l (cos(mθksj))

×[
B1,k

l,m cos(mϑksj) + B2,k
l,m sin(mϑksj)

]
k = 1, 2, . . . , N . (10)

where ρksj = |�rksj|.
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From Equations 5 and 10, we have obtained two ex-
pressions of potentials in the host region. It is clear that,
at the same position in host, the local electric fields
along the z-direction obtained from Equations 5 and 10
should be equal. Using this fact, we can establish a set
of Rayleigh’s identities about the unknown coefficients
B1,k

l,m and B2,k
l,m :

∞∑
l=1

l∑
m=0

(l + m)ρl−1
k Pm

l (cos(θk))

× [
A1,k

l,m cos(mϑk) + A2,k
l,m sin(mϑk)

]
= −E0 −

∞∑
j ′=0

N∑
s=1

∞∑
l=1

l∑
m=0

(l − m + 1)ρ−l−2
ksj′ × Pm

l+1

× (cos(θksj′))
[
B1,k

l,m cos(mϑksj′) + B2,k
l,m sin(mϑksj′)

]
,

k = 1, 2, . . . , N . (11)

where A1,k
l,m and A2,k

l,m , from Equation 7, can be linearly
expressed in terms of the unknown coefficients B1,k

l,m
and B2,k

l,m . The subscript j ′ denotes that the inclusion
sphere with the origin of coordinates is excluded from
the zeroth cell.

In order to solve the unknown coefficients from the
linear Equations 11, we define and calculate the lattice
sums:

W 1,l,m
k,s (q) =

∞∑
j ′=0

ρ−l−2
ksj′ Pm

l+1(cos θksj′) cos(mϑ ksj′), (12)

W 2,l,m
k,s (q) =

∞∑
j ′=0

ρ−l−2
ksj′ Pm

l+1(cos θksj′) sin(mϑ ksj′), (13)

where the point q = (xk, yk, zk) is in the host region
with the origin of coordinates located at the center of
the kth sphere in the zeroth cell.

ρksj = [(xk − xksj)
2 + (yk − yksj)

2 + (zk − zksj)
2]1/2.

where xksj, yksj and zksj are the coordinate components
of the sth sphere in the j th cell under the coordinate
system of the kth sphere in the zeroth cell.

cos(θksj) = (zk − zksj)/ρksj,

sin(ϑksj) = (yk − yksj)/r,

cos(ϑksj) = (xk − xksj)/r,

where r = [(xk − xksj)2 + (yk − yksj)2]1/2.
Then, Equation 11 is written as

∞∑
l=1

l∑
m=0

(l + m)Pm
l−1(cos(θk))

ρl−1
k

a2l+1
k

(
2l + 1

l(1 − σk/σh)
− 1

)

× (
B1,k

l,m cos(mϑk) + B2,k
l,m sin(mϑk)

)
= − E0 −

N∑
s=1

∞∑
l=1

l∑
m=0

(l − m + 1)
(
W 1,l,m

k,s (q)B1,s
l,m

+ W 2,l,m
k,s (q)B2,s

l,m

)
, where k = 1, 2, . . . , N .

(14)

We should point that if the position vector �rk is lo-
cated in the inclusion region, we can obtain the same
Rayleigh’s identities as Equation 11 by integrating
Equation 9 [17]. Thus, using the least-square method,
we can invert the unknown coefficients from the lin-
ear Equation 14 after we obtain the lattice sums by
choosing enough points in the medium. In calculat-
ing the effective conductivity in the next section, we
shall sum up to l = 3 in Equation 14 and the num-
ber of points q chosen is twice that of the unknown
coefficients.

3. Effective conductivity
In this section, we start to derive the formula of the ef-
fective conductivity of a random composites by making
use of the following formula [18]

1

V

∫
v

(J − σh E)dV = 〈J 〉 − σh〈E〉, (15)

where V is the volume of �h +�i , and �i = ∑N
k=1 �k ,

where �k represents the region occupied by the kth
sphere in unit cell. The bracket 〈· · ·〉 denotes the spa-
tial average over the whole unit cell. For a composite
medium with spherical inclusions randomly embedded
in a cubic cell, the effective conductivity can be defined
as

〈J 〉 = σe〈E〉, (16)

where σe is the effective conductivity of the random
composite. In order to derive the formula of the effec-
tive conductivity, substitute Equations 1 and 16 into
Equation 15, thus simplifying Equation 15 as follows:

1

V

N∑
k=1

∫
�k

(σk − σh) EdV = (σe − σh)〈E〉. (17)

Furthermore, we can derive the effective conductivity
σe by using the definition 〈E〉k = 1

�k

∫
�k

EdV , hence

σe = σh +
N∑

k=1

fk(σk − σh)
〈Ez〉k

〈Ez〉 . (18)

where fk is the volume fraction of the kth sphere in
the unit cell. From the electric potential in the in-
clusion sphere, i.e. Equation 4, the average electric
field along the z-axis 〈Ez〉k can be calculated, giving
〈Ez〉k = −C1,k

1,0 .
In the dilute limit, because the average electric field

along the z-axis 〈Ez〉 can be regarded as equal to the
external field E0, the formula for effective conductivity
is thus

σe/σk = 1 −
N∑

k=1

fk(σk/σh − 1)C1,k
1,0

/
E0 (19)

To calculate the average field along the z-axis 〈Ez〉
for high concentration of inclusion spheres, in order,
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we consider a spherical sample of the composite with
unknown effective conductivity σe immersed in a ho-
mogenous matrix with conductivity σh . The same ex-
ternal electric field E0 is applied to the composite sam-
ple along the z-axis. The averaged electric field 〈Ez〉 is
given by [18]

〈Ez〉 = 3E0

2 + σe/σh
. (20)

Substituting Equation 20 into Equation 18, the formula
for effective conductivity is derived.

σe/σh =
[

1 − 2

3E0

N∑
k=1

fk(σk/σh − 1)C1,k
1,0

]

×
[
1 + 1

3E0

N∑
k=1

fk(σk/σh − 1)C1,k
1,0

]−1

. (21)

Here, we note that, Equation 19 can be obtained from
Equation 21 if the volume fraction fk is small so that
| 1

3E0

∑N
k=1 fk(σk/σh − 1)C1,k

1,0 | � 1.
Next we shall investigate the effective conductivity

of random composites by means of Equation 21. To
investigate the effects of various factors of the spheres
on the effective conductivity, we consider the following
three cases. Case (A): the number of spheres is varied
for a fixed total volume fraction of inclusion spheres.
For case (B): the volume fraction and the contrast ra-
tio σk/σh are varied for fixed number and positions of
spheres in the unit cell. In case (C): given the total vol-
ume fraction and the number of the inclusion spheres,
the effects due to different spatial distribution are in-
vestigated. In each case, the samples are from differ-
ent realizations of dispersed spheres randomly embed-
ded in a cubic cell with edge length 100 units, which
are generated by standard Monte Carlo simulation
techniques.

Figure 1 For different number of spheres, the effective conductivity contrast ratio σe/σh as a function of ln(σk/σh ) at low volume fraction ( f = 0.042).

Case (A): We discuss this case in low and higher con-
centration of random spheres in order to investigate the
effects of the different number of inclusion spheres on
the effective conductivity. In the dilute limit, the total
volume fraction f = 0.042 is chosen. Different sam-
ples of five, ten and twenty-five spheres are used. The
spheres in each sample have the same radius and con-
ductivity. In Fig. 1, the curves of the parameters σe/σh

against ln(σk/σh) are plotted. It is clear that the num-
ber of the dispersed spheres does not affect the effective
conductivity. This because the polarization of the inclu-
sions is small in dilute limit. For higher concentration,
with volume fraction equals to 0.26, we have considered
samples having fifteen, twenty and twenty-five spheres.
Curves of σe/σh against ln(σk/σh) are shown in Fig. 2.
Obviously, the effects are important when the contrast
ratio σk/σh is larger than unity. The effective conduc-
tivity increases as the contrast ratio σk/σh increases,
as long as the ratio is greater than unity. This indi-
cates that the interaction due to inclusion polarization
is enhanced. That is, the conductivity of the inclusions
plays an important role in the effective conductivity due
to particle polarization. On the other hand, the differ-
ences in the effective conductivity are very small when
the parameter σk/σh is less than unity, because the in-
teraction of particle polarization is impaired. However,
as shown in Fig. 2, it is difficult to find any regularity
about the effects of the different number of spheres on
the effective conductivity. It may imply that the posi-
tions of the spheres in the unit cell is another important
factor. That is considered in case(C).

Case (B): For fixed number and fixed positions of
the spheres, the volume fraction and the contrast ratio
σk/σh are varied. A sample having twenty-five spheres
is employed. The plots of σe/σh against ln(σk/σh) with
total volume fractions at 0.042, 0.26 and 0.43 are shown
in Fig. 3. As can be seen, the volume fraction dramati-
cally affects the effective conductivity. When the con-
trast parameter σk/σh is greater than unity, the effective
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Figure 2 For different number of spheres, the effective conductivity contrast ratio σe/σh as a function of ln(σk/σh ) at high volume fraction ( f = 0.26).

Figure 3 For different volume fractions, the effective conductivity contrast ratio σe/σh as a function of ln(σk/σh ). The number of the spheres is fixed.

Figure 4 For different conductivity contrast ratio σk/σh , the effective conductivity contrast ratio σe/σh as a function of radius r for fixed number of
spheres.
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conductivity increases with the total volume fraction.
As expected, the effective conductivity is less than the
host conductivity σh if the parameter σk/σh is less than
unity. In Fig. 4, curves of σe/σh against the radius r
of the spheres are plotted for different contrast ratio
σk/σh . Obviously, it shows that σk/σh is also an impor-
tant factor.

Case (C): The spatial distribution of the spheres in
the unit cell are varied, with fixed volume fraction
and fixed number of the spheres. At high concentra-
tions of the dispersed spheres, three samples, having
twenty spheres with volume fraction 0.26 are consid-
ered. The plots of the effective conductivity for these
spheres at different spatial distributions are shown in
Fig. 5. One can see that the positions of these spheres
affect the effective conductivity. From the formulae of

Figure 5 For different spatial distributions of twenty spheres, the effective conductivity contrast ratio σe/σh as a function of ln(σk/σh ) at high volume
fraction ( f = 0.26).

Figure 6 For different spatial distributions of twenty spheres, the effective conductivity contrast ratio σe/σh as a function of ln(σk/σh ) at low volume
fraction ( f = 0.042).

the lattice sums and the effective conductivity, one can
see the reason. This is because the lattice sums de-
pend on the positions of the spheres located in the
unit cell, and hence give variations in the calculated
values of the coeffient C1,k

1,0 . Thus the effective con-
ductivity will have different values for different spa-
tial distributions of the inclusion spheres. Theoreti-
cally, for different spatial distributions of the spheres,
the intensities of the particle polarizations are dif-
ferent, and the values depend on the arrangement of
spheres in the cubic cell. In particular, for larger con-
trast ratio σk/σh , the positions of the spheres pro-
duce larger effects on the effective conductivity. How-
ever, Fig. 6 shows that at low volume fraction (0.042),
the dependence on spatial distribution is much less
important.
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4. Conclusions
Using Rayleigh’s method, we have derived formula for
the effective conductivity of composites with spheres
randomly embedded in a linear continuum. Various fac-
tors of the poly-dispersed spheres are investigated. Our
results show that the effective conductivity of the com-
posites not only relates to the volume fraction and the
conductivity of the inclusions, but also on their spatial
distribution. In particular, at large conductivity contrast
ratio σk/σh and high volume fractions, the derivation
of the effective conductivity is larger for different spa-
tial distribution. This may result from the intensities
of the surface polarization of the inclusions. Therefore,
both volume fraction and spatial distribution should be
considered when we design and apply the composite
material in engineering. Based on our formulae, we
can also investigate the statistical properties of effec-
tive conductivities if enough samples are employed. For
example, we can estimate the mean value, the mean-
square-deviation and probability distribution of the ef-
fective conductivity for different spatial distribution of
inclusions in the host medium.
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